Robust linearly optimized discriminant analysis

نویسندگان

  • Zhao Zhang
  • Tommy W. S. Chow
چکیده

Supervised Fisher Linear Discriminant Analysis (LDA) is a classical dimensionality reduction approach. LDA assumes each class has a Gaussian density and may suffer from the singularity problem when handling high-dimensional data. We in this work consider more general class densities and show that optimizing LDA criterion cannot always achieve maximum class discrimination with the geometrical based optimized LDA technique called robust linearly optimized discriminant analysis (LODA). A multimodal extension of LODA is also presented. In extracting the informative features, two effective solution schemes are proposed. The kernelized extension of our methods is also detailed. Compared with LDA, LODA has four significant advantages. First, LODA needs not the assumption on intra-class distributions. Second, LODA characterizes the inter-class separability with the marginal criterion. Third, LODA avoids the singularity problem and is robust to outliers. Fourth, the delivered projection matrix by LODA is orthogonal. These properties make LODA more general and suitable for discriminant analysis than using LDA. The delivered results of our investigated cases demonstrate that our methods are highly competitive with and even outperform some widely used state-of-the-art techniques. & 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction with Neuro-Fuzzy Discriminant Analysis

One of the most important tasks in any pattern recognition system is to find an informative, yet small, subset of features with enhanced discriminatory power. In this paper, a new neuro-fuzzy discriminant analysis based feature projection technique is presented based on a two stages hybrid of Neural Networks, optimized with Differential Evolution (DE), and a proposed Fuzzy Linear Discriminant A...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Nonlinear Discriminant Feature Extraction for Robust Text-independent Speaker Recognition

We study a nonlinear discriminant analysis (NLDA) technique that extracts a speaker-discriminant feature set. Our approach is to train a multilayer perceptron (MLP) to maximize the separation between speakers by nonlinearly projecting a large set of acoustic features (e.g., several frames) to a lower-dimensional feature set. The extracted features are optimized to discriminate between speakers ...

متن کامل

Target signature-constrained mixed pixel classification for hyperspectral imagery

Linear spectral mixture analysis has been widely used for subpixel detection and mixed pixel classification. When it is implemented as constrained LSMA, the constraints are generally imposed on abundance fractions in the mixture. In this paper, we consider an alternative approach, which imposes constraints on target signature vectors rather than target abundance fractions. The idea is to constr...

متن کامل

A new nonlinear discriminant analysis algorithm using a combined version of LDA and LLE

Linear discriminant analysis (LDA) is a simple but widely used algorithm in pattern recognition. However it has some shortcomings in that it is sensitive to outliers and limited to linearly separable cases. To solve this problem a new version of nonlinear discriminant algorithm is proposed. This new version, SC-LLE, uses LDA combined with LLE method to take into account non-linearly separable c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2012